在對(duì)貨幣體制的研究中,,蒙代爾發(fā)現(xiàn)要保持貨幣體系的獨(dú)立性,同時(shí)要實(shí)行自由資本,、自由匯率是不可能的,他稱之為“不可能三角”,。有的說(shuō)這個(gè)發(fā)現(xiàn)也有另外就是美元,,美元作為世界貨幣,既有美元的獨(dú)立性,,不單如此,,美元幾乎操縱了世界各國(guó)貨幣,這就是說(shuō)美元體系是獨(dú)立的,,而且美國(guó)還同時(shí)實(shí)行了自由資本,、
。
這當(dāng)然是個(gè)好的舉例,,但是只能算是半個(gè),。美元表面上三者是統(tǒng)一的,但是一方面它盡管主導(dǎo)著世界各國(guó)貨幣,,然而另一方面它也被世界各國(guó)貨幣反主導(dǎo),,比如那么多的美元資產(chǎn)在美國(guó)之外,不就是相當(dāng)于被別人主導(dǎo)了嗎?2013年年中,,美國(guó)其實(shí)很想減緩量化寬松,,但是稍一放風(fēng),新興經(jīng)濟(jì)體貨幣幾乎就應(yīng)聲而跌,,這自然對(duì)美元的獨(dú)立性有所影響,。從這個(gè)意義上講,作為世界貨幣的美元,,的確最有可能一方面保持自己的獨(dú)立性,,另一方面也能夠?qū)嵭匈Y本自由、匯率自由,,但是美元以及美元資產(chǎn)被其它貨幣反作用,、反持有,多少還是限制了其獨(dú)立性,,充其量美元具有更大的獨(dú)立性可能,但是卻不具有完全的獨(dú)立性,。所以,,這只是半個(gè)舉例,基本上蒙代爾不可能三角還是具有普世性,。
盡管蒙代爾描述的這種貨幣現(xiàn)象是基本成立的,,但是“不可能三角”這個(gè)稱呼在數(shù)學(xué)上卻是不完全確切的,幾何原理上說(shuō)任意兩點(diǎn)成線;三點(diǎn)不都在同一平面,,則不可能三點(diǎn)成同一直線;雖然任意三點(diǎn)可不在同一直線上,,但卻存在著唯一的同一平面。
因此確切地說(shuō),蒙代爾概括的現(xiàn)象,,最好叫“三點(diǎn)不在同一平面則不可能成一線”,,叫“不可能三角”顯然是不恰當(dāng)?shù)摹C纱鸂柛爬ǖ倪@種貨幣現(xiàn)象,,顯然第三點(diǎn)與其余兩點(diǎn)不在一直線上,,但卻存在著一個(gè)平面,反之要三點(diǎn)在同一直線上,,則不可能構(gòu)成一個(gè)三角關(guān)系,,而構(gòu)成了一個(gè)平面上的三角關(guān)系則不可能在同一直線上。
盡管任意三點(diǎn)不在同一直線,,但是任意三點(diǎn)卻可以構(gòu)成一個(gè)同一的平面,,這就是說(shuō)任意三點(diǎn)存在著一個(gè)唯一的“三角”,而不是“不可能三角”,。
所以,,蒙代爾“不可能三角”至少在表述上,與其說(shuō)是“不可能三角”,,還不如說(shuō)是“不是一面的三點(diǎn)不可能一線”,。
以上分析說(shuō)明蒙代爾分析的“貨幣體制獨(dú)立”、“自由匯率”,、“自由資本賬目”三者互為背離的現(xiàn)象不是孤立的,,只要三者不在同一平面,就肯定不在一線,,這個(gè)現(xiàn)象不光貨幣領(lǐng)域存在,,其實(shí)在廣泛的領(lǐng)域也都存在,只是要用更精確的數(shù)學(xué)語(yǔ)言表述就是“不是同一平面的三點(diǎn)不可能同在一線上”,。
但是現(xiàn)在要倒過(guò)來(lái),,假設(shè)硬要“三點(diǎn)一線”,顯然那就要改“貨幣體制獨(dú)立”,、“自由匯率”,、“自由資本賬目”三者中的那個(gè)不一致的,比如變“貨幣獨(dú)立體制”為“貨幣自由體制”,。有的說(shuō),,世界上大多數(shù)國(guó)家都正在朝這個(gè)體制努力。
但是這無(wú)疑需要在全球一體化的大趨勢(shì)下逐步落實(shí),,從“不可能三角”到“可能三角”絕不是一日之功,。那個(gè)目標(biāo)更多的只是一種理想。